Characterization of hADME and pharmacokinetics of inhaled Velsecorat: alternative use of IV dosing and AMS

Marta Pelay-Gimeno^a, Ann Aurell Holmberg^b, Lars Weidolf^b, Sofia Necander^b, Peter Bold^b, Sharan Sidhu^c, Rianne A.F. de Ligt^a, Elwin R. Verheij^a, Alexandra Jauhiainen^b, Ioannis Psallidas^b and Susanne Prothon^b

^aTNO, Leiden, The Netherlands; ^bAstraZeneca, Gothenburg, Sweden; ^cQuotient Sciences, Nottingham, United Kingdom

THE innovation for life

INTRODUCTION

Velsecorat is a potent non-steroidal glucocorticoid receptor modulator investigated as a potential treatment for asthma. In general, inhaled drugs suffer from additional complications during characterization of human absorption, distribution, metabolism and excretion (hADME), as well as pharmacokinetics (PK). Main challenges are: preparation of the right particle size for the ¹⁴C-compound, quantification of actual inhaled dose, and unknown long-term toxicity of inhaled ¹⁴C accumulated in the lungs. Thus, intravenous (IV) dosing is used as a surrogate route for inhaled administration.

STUDY DESIGN AND MASS BALANCE RESULTS

Techniques like accelerator mass spectrometry (AMS) have changed one of the main paradigms of the hADME strategy and are shaping a more flexible and sustainable drug development process. AMS' high sensitivity for ¹⁴C analysis has enabled the implementation of ¹⁴C-microtracer studies by reducing the radioactive dose, thereby enabling the conduct of hADME studies earlier in development. In addition, this completely eliminates the need for ¹⁴C-radiolabelled studies in animals.

PHARMACOKINETIC RESULTS

Figure 1. (A) A total of 6 subjects, healthy male and non-pregnant, non-lactating female, were dosed according to this scheme.

(B) Total radioactivity (TRA) analysis results: an average of 76.0% of the administered radioactivity was recovered at 168h after dosing, from which a 24.4% was recovered in urine and a 51.6% in feces.

	Cmax [pmol/L]	T _{max} [h]	T _{1/2} [h]	AUC _{0-t} [ng.h/mL]	CL/F or CL [L/h]	V _{ss} [L]		■ ■ IV velsecorat ■ Inhaled velsecorat	3 1000 m (7/100 m 1001 m 1000 m 10000 m 1000 m 10000 m 10000 m 10000 m 10000000000	-D- ¹⁴ C-velsecorat -∆- Total radioactivity*
Velsecorat (inhaled)	509	0.88	26.9	10600	107	-	tion 100 br	d d d d d d d d d d d d d d d d d d d		-
¹⁴ C-Velsecorat (IV)	543	1.00	1.99	671	70.7	113				
TRA	565	1.00	18.4	3380	13.6	276	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Figure 2. The d	ifference be	tween the t	t _{1/2} in plasr	na estimate	d for inhaled	d Velsecora			asma	

(27h) and for intravenous ¹⁴C-Velsecorat (2h) confirmed its elimination is absorption- \vec{a} rate-limited from the lungs. Thus, a long pulmonary residence time is ensured supporting a once-daily administration.

METABOLISM RESULTS

Figure 3. AMS metabolic profiles in human (A) plasma (AUC_{0-12h} (blue) and 24h (orange) pools); B) urine (0-72h pool); (C) feces (0-96h pool); and (D) Proposed metabolic scheme for Velsecorat in humans. Urine and extracts of plasma and feces were fractionated using an ultra-performance liquid chromatography (UPLC) system coupled to a high-resolution mass spectrometer (HRMS, e.g. Q-Exactive). Post-column, the eluent was split between the Q-Exactive (for on-line generation of high-resolution MS and MS² data) and the fraction collector (for off-line ¹⁴C determination in the fractions by AMS). Potential sites of metabolism are highlighted using the Markush coloring system.

CONCLUSIONS

- Velsecorat showed a high clearance, volume of distribution and bioavailability, and a confirmed absorption-rate limited elimination following inhalation. It is substantially metabolized via three major routes: O-dealkylation of the indazole ether (M2); ring opening of the 1,4-dioxane ring (M46) and ring opening of the oxolane ring (M47).
- The use of an IV ¹⁴C-microtracer enabled the determination of the mass balance, excretion routes and levels of circulating metabolites in humans with a radiation exposure similar to natural background levels. Additionally, high resolution metabolite profiles were obtained for all matrices, and metabolite identification was performed for all major metabolites and a number of minor metabolites.

REFERENCES

Aurell et al, Drug Metabolism & Disposition 50 (2022) 150-7; Young et al, Clinical Pharmacology & Therapeutics (2022).